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Abstract. By applying a phenomenological theory for long-wavelength polar optical
oscillations to mesoscopic layered semiconductor structures, we calculate the normal modes
of a quantum wire and of a free-standing wire. the cylindrical geometry is adopted with circular
cross-section of radius ry. The displacement field » and the efectric potential ¢ are calculated
for the different modes, as well as the dispersion relation curves. The case of the GaAs/AlAs
structure is analysed. We limit ourselves to the study of oscillations perpendicular to the wire
axis. The electron-phonon interaction Hamiltonian is derived for the present problem using the
second-quantization formalism.

1. Introduction

Polar optical oscillations in mesoscopic layered semiconductor structures (quantum wells,
superlattices, etc) have been intensively investigated in the last few vears. [1, 2, 3, 4].
Oscillations for the long-wavelength limit are well known to be important in many physical
problems and can be studied within the framework of phenomenological treatments such as
the dielectric continuum model [5, 6, 7, 8, 9] or the hydrodynamic model [8, 10, 11, 12, 13].
An exhaustive analysis of the different phenomenological models has been reported in [8].
However, the application of these kinds of approach to mesoscopic structures led to a certain
degree of disagreement with both Raman scattering experiments and calculations on the basis
of microscopic models [14, 15, 16, 17, 18, 19, 20, 21]. Nevertheless, it has been proved
that a rigorous application of the phenomenological theory, meeting all the requirements
of macroscopic physics of continuous media, leads to results in close agreement with both
experiments and microscopic calculations {22, 23]. The main points of this treatment are:
(i) we should solve a system of coupled differential equations for the displacement field
u and the electric potential ¢; (ii) we should apply matching conditions at the interfaces
in close consistency with both the differential equations of the treatment and the involved
physical principles; (iii) we are in general led to coupled oscillation modes involving a
mixed character. In the guanturn well case we do not obtain uncoupled T-(transversal), L
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(fongitudinal) or interface modes. On the contrary, the modes can show predominantly T, L
or interface character depending on the concrete physical conditions involved. All the above
mentioned features of the modes follow in a natural manner when the coupled differential
equations are properly solved and the appropriate matching conditions are applied. For
further details [22, 23, 24] should be consulted.

The phenomenological theory of polar optical oscillations has been applied also to
systems called quantum wires (QWs) and free-standing wires (FSWs). Preliminary results
for the QW case have already been reported in [25]. It should be remarked that previous
works related to Qws and FSWs (see, for instance, {26, 27, 28, 29, 30, 31, 35} have usually
incorporated the same kinds of difficulty discussed in the text above. The differences
between such kinds of dielectric continuum approach and microscopic calculations were
recently discussed by Rossi er al [36]. Microscopic calculations of the phonon dispersion
for rectangular quantum wires embedded in AlAs have been reported in [32, 34, 36]. The
anisotropic character of the phonon dispersion in that kind of structure was analysed for the
first time in [32] and it is in accordancé with similar calculations in quantum wells. Confined
and interface (both GaAs and AlAs) phonons are studied in [36] where they conclude
that the dielectric model with electrostatic boundary conditions is adequate, comparing
with microscopic results, whenever the wave-vector is relevant for the electron-phonon
scattering. Experimental evidence of surface phonons has been reported in [31], where
a Raman scattering experiment has been carried out in GaAs cylindrical wires of 30 nm
radius. The hydrodynamical model has been used in [27, 30, 35] to study the optical modes
in wires of circular geometry. This kind of treatment considers the phonons as purely
longitudinal or transverse, and the coupling between the electrostatic potential associated
with the LO phonons and the mechanical vibrations is not taken into account. This model
gives an incorrect formulation of the interface phonons and cannot reproduce the strong
coupling between LO and TO phonons predicted by microscopic caleulations [32, 36] and
recently confirmed by a correct formulation of the phenomenological theory in quantum
wells [17, 22] and superlattices [23]. In [26, 28, 33], the dielectric continnum model is
applied to obtain the interface and confined modes in a quantum weil with square symmetry.
A critical analysis of the results of these works has been given in {291, where also interface
phonons are analysed in different geometries (with different cross-sectional shapes). In the
frame of the dielectric continnum model, the authors of [35] studied the optical modes and
gave an extension ad hoc by using lattice dynamic theory and imposing that the electrostatic
potential associated with the optical phonons and the displacement vector must vanish at
the interfaces of the rectangular quantum wire.

The fundamental aim of the current work is to continue with the application of the model
developed in [24] to Qws and FSWs. We have chosen a cylindrical geometry with circular
cross-section of radius rp and also limited ourselves to the important case of oscillations
perpendicular to the wire axis. Here we report the nature of the oscillation modes with
detailed reference to the dispersion relation curves, the oscillation amplitudes and the
electric potential. Moreover, a derivation of the Frdhlich-like electron—phonon interaction
Hamiltonian by applying the standard methods of quantum field theory is presented. It
is remarkable that the present calculations lead to a relatively close agreement with the
microscopic calculations of [36].

2. Model and fundamental equations

We approach the present problem in the long-wavelength limit applying the physics of
continuous media. For the description of the opscillations we use the displacement vector
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field 4 (with units of length), which represents the relative displacement of the two ions
involved (considering the typical cases of GaAs or AlAs). The other important quantity is
the electric potential ¢, related to the electric field E in the standard way E = —V¢ for
the unretarded limit (¢ — ©0). Other physical parameters of the medium are: p = (M /),
the reduced mass density, M is the reduced mass of the ions and v, is the unit cell volume;
@ is the limiting (bulk) transverse optical frequency of the oscillations; S and 8y are
two parameters describing the dispersion of the oscillations; €y (€,.) are the static (optic)
dielectric constants of the medium; «wy, is the limiting (bulk) longitudinal optical frequency
of the oscillations, given by the Lyddane-Sachs—Teller relation: mﬁ = (eo/ew)co%. For the
isotropic medium case the fundamental equations of this theory are [24, 25]

(wz—w%)u=%v¢+ﬁfvv-u—ﬂ%VxVxu )
and
Vo= TGy @
€0
where
@ = (&g — €x0)pew? /4. 3)

The matching boundary conditions were also derived rigorously from equations (1) and
(2) (see [25]) and bear a direct physical meaning, They are:

(i) continuity of w and ¢ at the interfaces;
{ii) continuity at the interfaces of oy, where:

oy=0+N (4)

N being a unit vector normal to the interface and o a tensor, which follows from (1),
whose components are given by: -

oy = —p(BE — 2BV - wdy — 2083, ®

(iii) continuity at the interfaces of Dy = I} - N, where I} is the electric induction
vector, given by:

D = dnoau — 6., V. : (6)

In the current work all the equations given above will be applied to 2 Qw (ot to an
Fsw) of cylindrical shape. Then the z axis is chosen as the cylinder axis with infinite
length. The cylinder cross-section is circular with radius rg. In the QW case for r < rg
we have a certain medium (say GaAs) and for r > rg the medium is differént (say, AlAs).
In the FsW case for r > rp we have just vacuum or some other medium such as quartz)
allowing free oscillations of the surface. For this kind of structures we shall use cylindrical
coordinates (r, 8, z). Equations (1) and (2) represent a complicated system of coupled
differential equations. For their solution we make use of auxiliary potentials ¢ and A, such
that: ’ ’ '

u=V§+VxA | Q)

where the supplementary condition V - A = 0 is imposed. Substitution of (7) in (1) leads
us to a certain vector equation. Taking the divergence and the curl of such an equation
(and also applying equation (2)) it can be proved, after a little algebra, that the auxiliary
potentials satisfy the following equations:

2 _ .2
w2 [VZA + QT*ET;”;A] ~0 ®)
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and
L —w?

=0, 9
7 1&] ®

Equations (8) and (9) are uncoupled equations for A4 and v, which can be solved
applying straightforward methods. Once we have cbtained solutions for (8) and (9), we
obtain © by means of equation (7). Substitution of this explicit expression for @ in equation
(2) allows us to determine the electric potential ¢ after solution of the resulting Poisson
equation. By this procedure we obtain general analytical solutions for the coupled quantities
u and ¢. In the frame of the present work we shall limit ourselves to the investigation
of oscillations perpendicular to the wire axis, i.e, g; = 0 {and hence i, = Q), where g is
the wavevector. We are thus considering a particular case, which, however, entails a direct
interest for the study of certain physical processes (one-phonon resonant Raman scattering
for several scattering configurations [37], for instance) and gives us an insight into the nature
of the oscillations. The following results obtained cannot be used for a direct evaluation
of physical processes such as scattering rates or free carrier absorption, where g, 0. For
u, =0 we can take:

A= A,(r,0)2 ' (10)

where 2 is the unit vector along the z axis. Taking also ¥ = ¥{(r,8) we are led to a
displacement vector of the form:

u =u,(r, O)F +ua(r, 0)8 an

where # and @ are the corresponding unit vectors in cylindrical coordinates. It can be easily
seen that:

v? [Vzw + &

3w 134, 18y 94,
il e e A ety v (12)

while A, and ¥ satisfy the following equations:

18/ 04\  18%°4; oR—oP

Frl ) A *‘E%—Az:f‘ )
ay 321}'f

;Br( ar ) TR r2 392 ,B ’1’ P 4)

In equations (I3} and (14) the functions ) and fa are soiutions of the Lapiace equation
in cylindrical coordinates:

V2 f; =0. (15)

We shonld require the solutions to be regular in » = 0 and in r = co. We will not
present here the tedious (but straightforward) mathematical details, and will just report the
final results. A general analytical basis for the solution space of this class of problems is:

(in/r) fa(Qr) qf,(qr) )
[ Qf' or) :’ l: Gn/r)ifn(qr) Jeme
(Ama e} folgr)

(16)

line/p(w? — wi)]r"-! lina/ plew? — w2)]r—+D
n pe

I:[noz/p(w —w%)]r” [] o [ {nal/p(w _mr)] —(n+l):l
cﬂ

r

An arbitrary solution of the equations (1) and (2) within the conditions of the present
problem can be represented as a linear combination of the vectors given in (16). For the
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determination of the solution in a given region divergent vectors in some point of that region
should be excluded. We have also introduced:

. QZ_:w%_wz

[ Bt
and f,(x) represents a solution of the Bessel equation of order » (this function should be
bounded in its domain of definition). It must be noticed that & < ¢y, for all the frequencies
involved in the present problem; thus g is always a real quantity. On the contrary, Q is
real for @ < @y , but it is an imaginary quantity for wr < @ < wg.

We must determine the vector oy, defined in (4), in cylindrical coordinates. An
elementary evaluation of this vector leads to the following result:

2 2
7_ W —w
q =

(7)

on = a,P + 058 + 0.2 _ (18)
where :
du louwg 1
= B~ p(B~ 2B (F + m )
an 13a 1
— _ppefi¥e 2% 2 19
o pﬁT( or + r g¢ rua) (1

o; = —pﬁ%(%? + %“7‘).

3. Quantum wire and free-standing wire

Let us now assume a cylindrical QW with GaAs for » < rp and AlAs for r > ry. Instead
of the general matching boundary conditions depicted in section 2, in this case we shail
impose {22]

(i) continuity of ¢ and Dy atr = ro (Dv = D, = 4:ra¢u,, - eooaqb/ar)
(i =0forr =rp.

The matching conditions described above should be applied to the solutions of the QW
case. Avoiding mathematical details, we just report the results obtained [38}:

_ g |fn®) o (_) (i’_)
ur_é{J’fnﬂ(y)ff" J_]fo I )

€aco B £ EEE'__ 7 ing
+ €poo T €aco (ﬁ‘l') y? l:fn_l(x) T fn(x) (eaoo 1)] (70) ]3

(20)
_glfm® TN mre (_r_)
w=F fnﬂ(y)f“(yro)J“ G )f" ;

€ace AL
T et + oo (ﬂT) 57 1)

n—1 ’
+ £.0x) (Eboo )] (:_E) }ei(ne-i-:r/Z) : (21)
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[ £a Ger fro) — (x/n)€aso/ (€beo + €aco)]

_4naB | [Fam1 () + n/xfn(x) (Evoo/ €aco — D] r/r0)" e r<ro
@ & | {£,(x) — (5/m)€ao/ (€00 + €ac0)] ,
X [Famt () + 1/ 2 (%) (Eboo/€ac0 = 1]} (ro/7)" & r > ro.
22)
In the expressions above: x = grg, y = Qrg and
A 22 (B s
(2) - (B =
B AL

while the constant B was introduced in order to ensure the normalization of the oscillation
modes. The eigenfrequencies of the oscillation modes for this case are reported in [25]. For
an FSW we have © = 0 for r > rp but there is an electric potential ¢ 3£ 0 in the whole space,
The form of the solutions can be easily deduced from the general analytic basis studied in
section 2. The matching boundary conditions corresponding to the present case are:

(i) continnity of ¢ at r =rp
{(ioy=0atr=nr
(iii} continuity of Dy = D, at r = ry.

The Jatter condition entails the following relation;
a3 b
dran(ry,8) — 5:100’65,2(’0_ , &) = —-sbwa—f(rg' . 0). (24)

Applying the above mentioned matching boundary conditions, we are led to the
following solution of our problem:

— l _r 8n(x) o r
= Bro [ ¥ fusa () 7 I (yrg)
+xf, (xi +n (ﬁz‘-x2 -y (2, ) (.’f_ ! oin® 25)
a To ,B% y n\X, Y ~
— _1_ ____l g.(x) , r o r
o= Bro [ ¥y o2 () & (yro) +n ( r ) Ja ("ro)
+n 3 X2 — 2) 5.0, y) (i ! S+ [2) 26
ﬁ'% 7 nis ¥ L)
[ fa er/ro} — ta(x, ) (r/ro)*] & r<rn
- 4:rmB [ . o
EEIOO [ﬁ: (x) - tﬂ(x! Y)] (rO/r)n ema r>rnr

where

2 -1
talx, ¥) = [J’zfn (%) fug2 ) + :a°° &n (x)fn(y)} [(E‘E’- (&) e+ yz) fr:+2()’)] (28)
boo €boo JBT

and
2

gnlx) = —g%xzfucx) — 20+ D)5 fipa () 29
T
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B is again a normalization constant. The eigenfrequencies of the oscillations for the Fsw
case are given by solving the following secular equation:

2
2n(n ~ 1) (ﬁ—;) R¥u(%, 3) Frs2 () + 209 Fra ) [37206) = f®)]

a0} 257100 + OF = 20 ()] = 0 (30)

where R was defined in equation (23).

4. Electron-phonen interaction Hamiltonian

The fundamental ecjuations of this theory are equations (1) and (2), having the general form:

, ’ I &ju
fz]-e[s 2]z] :
[cﬁm] =10 o]| @n
where M is a matrix differential operator [39]. We use subscript m to label the different
eigenvalues. Elsewhere [39] we have proved that: (i) the operator M is Hermitian with

respect to the solution space of the present problem; (ii} the eigensolutions of equnation (31)
are orthogonal in the following sense (see the appendix):

fpu; Uy Pr =0 for m # m'. 32)

The integral in (32) is taken over the whole volume of the system. For a Hermitian
operator it is clear that the set of eigensolutions of equation (31) (ie., the infinite set of
eigenvectors w,,) constitute a complete set. Therefore, from the eigensolutions of equation
(31) we can always construct a complete set of orthonormal eigenvectors, representing a
basis that spans the solution space of the present problem. It has been shown in [8] that
the electron—phonon scattering rates in quantem wells are practically independent of the
set of functions used, if this set is orthogonal and complete. In [39] the necessary and
sufficient conditions to have a space of orthonormal and complete functions independent
of the geometry of the system has been given, These conditions are connected to the
Hermiticity of the operator A4 and the boundary conditions that the functions % and ¢ have

to satisfy.
For our case we introduce the following labelling of the eigenvectors:
' Ly aind ]
n(r,6) = { Run(PY + Oum (110 —— (33)

The functions R, {r) and ®,,(r) can be easily inferred from the results of section 2. The
orthonormality condition is then given as follows

f P [R;‘mR,,mf + ‘@;’,‘m@),,m:] rdr =38,. (34)
The other important point is completeness, which can be stated as follows:
" ' % AT ain{8—8" 8(r—r) ’
3 P [Rinr) Rum () + € () B (F)] € =2 ————=4(8 — 6. (35)
nm

It is also clear that the potential ¢ can be written in the form:
bum(r, 8) = fum(r)e™. (36)
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From the eigenvectors obtained in the previous sections we can construct a general
displacement vector u(r, 8, t} by linear superposition. In a similar way we can construct
a general potential ¢(r,#,7). In the second-quantization formalism, the components of
@(r, ), in cylindrical coordinates, are given by: '

& = Y, Con [ Run ()% =0b,, + uc] BRED
nm

g = 3 Con [ @I85 (")
n.m

Notice that, without loss of generality, we assume constants Cp» to be real guantities.
Following the procedure described in {39], the constants Cp,;, are determined. We here
write just the final result;

Y 1/2
Cnm=[2c'd L] . (39)

We thus have a complete determination of the quantum field operators describing the polar
optical phonons in the structures we are studying. In order to determine the electron—phonon
interaction Hamiltonian we have to write the corresponding operator for the potential:

B(r,0.1) = Zc,m

4n'ozrg

[F (r)eie=—enp, -I-HC] (40)

The-constants Cy,, must be the same as in (37) and in (38) because these quantities
correspond to solutions of the coupled equations of thls theory Fum(r) is defined by:

Jom(T) = Fom(r) ) (41)

where fum(r} was introduced in (36). We are thus finally led to a Fréhlich-like electron—
“phonon interaction Hamiltonian, which can be obtained from —edb:

drarg

==}

H= Y Con [ Fan()6"B, + 1] “2) -
nJm
where )
- gfwl_‘.p 1z 3 2me?, hCOL
Com = roCk F=—y —5— o) (43)
[/ - 1%

It should be also remarked that when writing the Hamiltonian z = 0 was set. Concerning-
functions F,,(r), they have different forms for the Qw and for the Fsw. From equation (22)
we have:

(1/x) fr (xr/ro) — su(x) (r/ro)" r<ro
F _p (44)
[(/x) ) — 52 )] Cro/7)" r>rg
where
€aco €aco
) = — 2 [ )+ 2 (——) fn(x)] . @)
€a00 T €hoo €100
From equation (27} we have: i ’
fa (xr/ro) — ta(x, ¥) (r/ro)® r<rp
FFSW = B (46)

[F(x) = 8 (x, )] o/ )" r>r
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where #,(x, y} was defined in (28). It should be noted that in equations (44) and (46) the
constants B,,, are the same as introduced in section 3 in order to ensure the orthonormality
of the eigenvectors ., i.e., equation (34). The Hamiltonians (44) and (46) are reduced
to those obtained in the dielectric continuum model for a sufficiently large ry. Purely
superficial modes are obtained for rp —+ o0, i.e. when the mechanical boundary conditions
(short-range interactions) are negligible. In that case, the long-range interactions associated
with the electrostatic potential are dominant. Thus, our phenomenological model is reduced
to the dielectric continuum madel with electrodynamical boundary conditions as a limniting
case. If ro is smaller than or of the order of ¢~! and Q7!, the effects of the mechanical
boundary conditions become importani. In the general case g, 3 0 the above discussion
still remains valid. We have thus completely determined the electron—phonon interaction
Hamiltonian 71, describing the Frohlich-like interaction between electrons and polar optical
phonons in the studied structures. It must be remembered that, within the restrictions of
our calculations, this Hamiltonian describes the interaction with phonons having ¢, = Q.

5. Numerical results

For a numerical analysis of the results of sections 3 and 4 we have taken the parameters
of GaAs [22]. The study of the Qw has been carried out within the simplified assumption
€100 = €boo, DUt for the FSW €y0=1. Figure 1 shows dispersion relation curves (phonon
energies fiw as a function of radius ry) for three values of n: n =0, n =1 and 1 = 2.
The three graphs of the upper part of the figure correspond to the QW case, while the three
graphs of the lower part correspond to the FSW case. For n = 0 we have decoupled L and
T modes. The broken lines correspond to the bulk L and T phonon energies respectively.
For n 3 0 the modes are coupled and there can be seen the strong mixing between the
T and L parts of the oscillations. It is also seen that, whenever a curve resembling an L
decoupled phonon dispersion curve approaches the corresponding nearly “T phonon’ curve
an anticrossing takes place and their behaviour changes from L to T phonon dispersion
and vice versa. At these points of strong dispersion the contribution from the electric part
of the oscillations is stronger. These resuits agree qualitatively well with those obtained
in the microscopic calculations of [32, 36] for a QW with rectangular cross-section. The
strong mixing between T and L phonons has been predicted by microscopic models (see
for instance [157) and correctly described by phenomenological continuum treatments in
QW [22, 23]. As rg — oo the bulk T and L phonon dispersion relations are recovered. It
is interesting to realize that, in the n # 0 case, a new solution appears between A, and
her, which correspond to a homogeneous polarization of the cylinder. This is the so called
Frohlich frequency, fiwg, which appears from the boundary conditions in finite media, and it
was introduced by Frohlich in the study of spheres embeded in an infinite medium {40, 41].
For that frequency, there is no difference between longitudinal and transverse modes. In
the case of a cylinder, it can be written as:

€20 + €boe o
€aco + €beo

and, sobstituting the parameters of GaAs, her = 36.28 meV for the QW case and for =
34.15 meV for the FsW. Figure 2 shows the components of the displacement vector w as a
function of r for the Fsw case. The drawings are the first and second solutions for a radius
of ro = 21.5 A for three different values of n (n = 0, 1 and 2). The solid curve corresponds
to the u, component, while the dashed line corresponds to the #p solution, which vanishes
in the n = 0 case (if the vibrations correspond to transverse solutions, the component of

wi = 47
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Figure 2. Phonon amplitudes R, (r, 8) (solid line) and ©,,,(r) (dashed line) as a function of r
(m=1,2and 3; »n =0, 1 and 2) for the Fsw case. In the # = 0 case we show only the R,n ()
component, since @, (r, #) = 0 for the first longitedinal mode. The calculations correspond to
a radius ry = 21.5. The amplitude bas been normalized to the section of the cylinder, following
equation (34). The same arbitrary units are used in all figures.

w different from zero is ug). The amplitude in the surface can be different from zero
because the boundary conditions are applied over the stress component (oy = 0 at the
surface). For the description of the potential we are using both direct plots of ¢ against
r and tridimensional plots. In figure 3 there are shown such plots for the FSW case. We
also present the r = 0, 1 and 2 modes for different phonon energies. In the tridimensional
plots we use variables x and y, which should not be confused with the x and y variables
used in previous sections. In this case they represent usual cartesian coordinates, related
to the cylindrical coordinates in the usual way: x = rcosé and y = rsin@. Moreover, x
and y are measured in units of rp. The potential profiles were taken at x = 0, while ¢ was
measured in units of: :

cg (B

BETNT
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Figure 4. Electrostatic potential ¢y, (v, 8) as a function of r and ¢ forn =m =2, x and y
represent standard Cartesian coordinates. At the top we show the projection on the z = 0 plane,
and at the bottom a three-dimensicnal plot. The potential has been divided by the constant

2Rl (el — €5 1)/ V. and has units of meV—Y2 &,

We can observe in the potential profile (at the top of figure 3) the continuity of the
potential at r = rp. Finally, figure 4 shows another graph for the potential in the form of
equipotential curves in the (x, y) plane (top) and as a three-dimensional plot {bottom). The
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mode with n = 2 and m = 2 is presented. The modes were all normalized in the form
described in section 3. It can be seen that we obtain the correct symmeiry pattern for the
potential and the mechanical oscillation amplitudes. It is also cbvious that the requirements
of classical electrodynamics are fulfilled.

6. Concluding remarks

In this work we aimed to give a refatively complete treatment of the polar optical phonons
and the electron—phonen interaction in semiconductor structures of the type of QWs and FSws
having cylindrical geometry, We studied the important case of axial wave vector ¢, equal
to zero. COur treatment is characterized by a consistent application of the phenomenological
approach, based on the principles of macroscopic physics of continuous media. We have
proved that such a treatment, including a correct manipulation of the maiching problem,
leads to results that (i) do not violate the standard principles of macroscopic physics, (ii)
provide a satisfactory account of the physical features of the eigenmodes in a QW and an
Fsw, and also appear to agree well with microscopic calculations. Therefore, artificially ad
foc manipulations are not needed in order to get correct results and we also do not have to
induce the correct long-wavelength behaviour starting from microscopic models.
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Appendix. Orthogonality of the amplitudes

Let us now briefly describe how the orthogonality condition (i.e., equation (32)) can be
proved in our case. From equations (1} and (2}, taking due account of equations (33) and
(36), we can find that

[aﬁ, - @+ (28 + ﬁﬁ)r—i-] R,

o, . P, in
==t AR+ ’f—LRm +— (B - B)On — (B + B0

)
[w;'; ~ @} + 7L+ ﬁ%)r—Z] O
1 2 . .
=2 g+ B D - R+ D R (A

For brevity we are avoiding the subscript » in all our expressions. We now proceed in a
rather standard way for this kind of demonstration. (A1) is multiplied by R},. After that
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we take the complex conjugate of equation (A1) with the change m — m’ and multiply it
by R,,. Subtracting the second equation from the first one we obtain:

(Cl')?n - w’ir)R:’_l Rm

o ’ o
= S by~ R+ B RS, = ByiRa) + = i L (R, Ry — RuR)

in . e in " .
+-r—(,3§ — BHIRL O, + Ra® ] — r—z(ﬁf + 5%)[1?,,,,@,,, + O Ry).

(A3)
Applying the same procedure to equation {A2) we obtain:
(wi - w,?; )®* r@m
lﬂa * * " 1y
= —-(@ fm +Onfr) + BHEL B! — 0,8%)
ﬁ-rz ! f
+——(@*,®’ — 050+ —(5,3 — BHIEL R, + @y R %1 (Ad)
Summation of equations (A3) and (A4) prowdes i
(@2 — 2 )[Re Ry, + ©4.0,]
mar .
- P fm+®mf]+ (R*f mmf)
. 2 4
B,y - Rk + L 007, — 0,070
+(6f — ﬁT)-;—-(F[R,’,’,,@m + R @5, : (A5)
From equation (2}, applying equation (A2), we obtain:
2 4 1
f£+lfég—n—zm— M[R + R, + @m] (A6)
¥ r €na

From equation (A6), after straightforward mathematical manipulations, we can find that:
ina . . : :
p_r[®m Fow + O fl |
G % e 1 * i
=4—;‘; I:{frﬁfm’_fmffM)_!_;(fr:x m'_fm*:fm)]
[+ [+ ‘
+—-[Rmf,:’ = fm Ryl — —[Rf,,f,,",‘« —~ Ry ful. (AT)

Substitution of equation (A7) into equation (AS) leads us to:
(a) — ))(R*IR + @*r@m)

— _6_0’;1_(_:‘_ ! o £k Eli " _ "
4:1-& r d?’[ (fmfm’ fm’fm)] + or dr [r(Rm’fm Rmfm’)] 7
+§'I=“[ (8,0, — @n® )]+ (5 - .Br)m?—u?* On + Rn®L).  (AB)

Integration of equation (A8) gives:

L]
(@l — ) f (R Ry, + O Oplr dr

Gcor 0

oo i = — F Fdlran + (B2 — BDin[R:On + Ry®2|,=0. (a9
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It is ecasy to prove that w,, = 0 for r = 0 whenever n % 1. But for n = 1 it is seen
that:

[R;:@m + Rm®;!] IJ‘=“-’0 = 0-

On the other hand, due to matching boundary conditions, it is seen that the first term on the
right-hand side of equation (A9) is zero. Hence, we have proven that, for m = m':

o
f (R R, + ©%0,]rdr =0. (A10)
0

This is the orthogonality condition for our present problem, valid for both the QW and
the FSW.
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