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Abstract. By applying a phenomenological theory for long-wavelength polar optical 
oscillations to mesoscopic layered semiconductor st~ctures,  we calculate the n o d  modes 
of a quantum wire and of a free-standing wire. the cylindrical geometry is adopted with circular 
cross-section of radius ro. The displacement field U and the electric potential @ are calculated 
for the different modes, as well as the dispersion relation curves. The case of the GaAsIAIAs 
structure  is^ malysed. We limit ourselves to the st,udy of oscillations perpendicular to the wire 
axis. The electron-phonon interaction Hamiltonian is derived for the present problem using the 
second-quantization formalism. 

1. Introduction 

Polar optical oscillations in mesoscopic layered semiconductor shuctures (quantum wells, 
superlattices, etc) have been intensively investigated in the last few years. [I, 2, 3, 41. 
Oscillations for the long-wavelength limit are well known to be important in many physical 
problems and can be studied within the framework of phenomenological treatments such as 
the dielectric continuum model [5,6,7, 8,9] or the hydrodynamic model [S, 10, 11, 12, 131. 
An exhaustive analysis of the different phenomenological models has been reported in [SI. 
However, the appliqtion~of these kinds of approach to mesoscopic structures led to a certain 
degree of disagreement with both Raman scattering experiments and calculations on the basis 
of microscopic models [14, 15, 16, 17, 18, 19, 20, 211. Nevertheless, it has been proved 
that a rigorous application of the phenomenological theory, meeting all the requirements 
of macroscopic physics of continuous media, leads to results in close agreement with both 
experiments and microscopic calculations [22; 231. The main points of this treatment are: 
(i) we should solve a system of coupled differential equations for the displacement field 
U and the electric potential 6; (ii) we should apply matching conditions at the interfaces 
in close consistency with both the differential equations of the treatment and the involved 
physical principles; (iii) we are in general led to coupled oscillation modes involving a 
mixed character. In the quantum well case we do not obtain uncoupled T~(transversal), L 
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(longitudinal) or interface modes. On the contrary, the modes can show predominantly T, L 
or interface character depending on the concrete physicaI conditions involved. All the above 
mentioned features of the modes follow in a natural manner when the coupled differential 
equations are properly solved and the appropriate matching conditions are applied. For 
further details [22, 23, 241 should be consulted. 

The phenomenological theory of polar optical oscillations has been applied also to 
systems called quantum wires (Qws) and freestanding wires (FSWs). Preliminary results 
for the QW case have already been reported in [25]. It should be remarked that previous 
works related to Qws and FSWS (see, for instance, [26, 27.28, 29. 30, 31, 351) have usually 
incorporated the same kinds of difficulty discussed in the text above. The differences 
between such kinds of dielectric continuum approach and microscopic calculations were 
recently discussed by Rossi ei al 1361. Microscopic calculations of the phonon dispersion 
for rectangular quantum wires embedded in AIAs have been reported in [32, 34, 361. The 
anisotropic character of the phonon dispersion in that kind of structure was analysed for the 
first time in [32] and it is in accordance with similar calculations in quantum wells. Confined 
and interface (both GaAs and AIAs) phonons are studied in [36] where they conclude 
that the dielectric model with electrostatic boundary conditions is adequate, comparing 
with microscopic results, whenever the wave-vector is relevant for the electron-phonon 
scattering. Experimental evidence of surface phonons has been reported in [31], where 
a Raman scattering experiment has been carried out in GaAs cylindrical wires of 30 nm 
radius. The hydrodynamical model has been used in [U, 30,351 to study the optical modes 
in wires of circular geometry. This kind of treatment considers the phonons as purely 
longitudinal or transverse, and the coupling between the electrostatic potential associated 
with the LO phonons and the mechanical vibrations is not taken into account. This model 
gives an incorrect formulation of the interface phonons and cannot reproduce the strong 
coupling between LO and TO phonons predicted by microscopic calculations [32, 361 and 
recently confirmed by a correct formulation of the phenomenological theory in quantum 
wells [17, 221 and superlattices 1231. In [26, 28, 331, the dielectric continuum model is 
applied to obtain the interface and confined modes in a quantum well with square symmeay. 
A critical analysis of the results of these works has been given in [29], where also interface 
phonons are analysed in different geometries (with different cross-sectional shapes). In the 
frame of the dielectric continuum model, the authors of 1351 studied the optical modes and 
gave an extension ad hoc by using lattice dynamic theory and imposing that the electrostatic 
potential associated with the optical phonons and the displacement vector must vanish at 
the interfaces of the rectangular quantum wire. 

The fundamental aim of the cument work is to continue with the application of the model 
developed in [24] to Qws and Fsws. We have chosen a cylindrical geometry with circular 
cross-section of radius ro and also limited ourselves to the important case of oscillations 
perpendicular to the wire axis. Here we report the nature of the oscillation modes with 
detailed reference to the dispersion relation curves, the osciilation amplitudes and the 
electric potential. Moreover, a derivation of the Frohlich-like electron-phonon interaction 
Hamiltonian by applying the standard methods of quantum field theory is presented. It 
is remarkable that the present calculations lead to a relatively close agreement with the 
microscopic calculations of 1361. 

2. Model and fundamental equations 

We approach the present problem in the long-wavelength limit applying the physics of 
continuous media. For the description of the oscillations we use the displacement vector 
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a field U (with units of length), which represents the relative displacement of the two ions 
involved (considering the typical cases of GaAs or AlAs). The other important quantity is 
the electric potential 9, related to the electric field E in the standard way E = -V9 for 
the UNetarded limit (c -+ 00). Other physical parameters of the medium are: p = ($ i /uc) ,  
the reduced mass density, fi is the reduced mass  of the ions and U, is the unit cell volume; 
wr is the limiting (bulk) transverse optical fr4uency of the oscillations; pL and & are 
two parameters describing the dispersion of the oscillations; €0 (e,) are the static (optic) 
dielectric constants of the medium: a is the limiting (bulk) longitudinal optical frequency 
of the'oscillations, given by the Lyddane-Sachs-Teller relation: 02 = ( 6 o / c m ) ~ .  For the 
isotropic medium case the fundamental equations of this theory are [24, 251 

(1) 

, 

ff 
( 0 2  -@:)U = -V@ +&VV.  U-a'v x v x U 

P 
and 

4nff 
Em 

024 = -v . U 

where 
ffz = (€0 - E m ) p 4 / 4 n .  (3) 

The matching boundary conditions were also derived rigorously from equations (1) and 
(2 )  (see [25]) and bear a direct physical meaning. They are: 

(i) continuity of U and 9 at the interfaces; 
(ii) continuity at the interfaces of UN, where: 

uN=U*N (4) 
N being a unit vector normal to the interface and U a tensor, which follows from (l), 
whose components are given by: 

uij = -p(p: - 2&(V * U)&j - 2P&Uij ( 5 )  
(iii) continuity at the interfaces of DN = D .  N ,  where D is the electric induction 

D 4~0ru - E , V ~ .  (6) 

In the current work all the equations given above will be applied to a QW (or to an 
Fsw) of cylindrical shape. Then the z axis is chosen as the cylinder axis with infinite 
length. The cylinder cross-section is circular with radius ro. In the QW case for r < ro 
we have a certain medium (say GaAs) and for r > ro the medium is different (say, AlAs). 
In the FSW case for r > ro we have just vacuum or some other medium (such as quartz) 
allowing free oscillations of the surface. For this kind of stmctures we shall use cylindrical 
coordinates (r. 8 , ~ ) .  ~ Equations (1) and (2) represent a complicated system of coupled 
differential equations. For their solution we make use of auxiliary potentials $r and A, such 
that: 

(7) 

vector, given by: 

U = V @ + V  x A 
where the supplementary condition V . A  = 0 is imposed. Substitution of (7) in (1) leads 
us to a certain vector equation. Taking the divergence and the curl of such an equation 
(and also applying equation (2)) it can be proved, after a little algebra, that the auxiliary 
potentials satisfy the following equations: 

0 2  
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and 

Equations (8) and (9) are uncoupIed equations for A and $, which can be solved 
applying straightforward methods. Once we have obtained solutions for (8) and (9), we 
obtain U by means of equation (7). Substitution of this explicit expression for U in equation 
(2) allows us to determine the electric potential q4 after solution of the resulting Poisson 
equation. By this procedure we obtain general analytical solutions for the coupled quantities 
U and q4. In the frame of the present work we shall limit ourselves to the investigation 
of oscillations perpendicular to the wire axis, i.e., = 0 (and hence uz = 0), where q is 
the wavevector. We are thus considering a particular case, which, however, entails a direct 
interest for the study of certain physical processes (one-phonon resonant Raman scattering 
for several scattering configurations [37], for instance) and gives us an insight into the nature 
of the oscillations. The following results obtained cannot be used for a direct evaluation 
of physical processes such as scattering rates or free carrier absorption, where 4r f 0. For 
uz = 0 we can take: 

, 

A = A, (r,  0 ) i  (10) 
where 2 is the unit vector along the z axis. Taking also $ = @(r, 0 )  we are led to a 
displacement vector of the form: 

U = u,(r, e); + ua(r, 0)B  (11) 
where P and 
seen that: 

are the corresponding unit vectors in cylindrical coordinates. It can be easily 

while A, and * satisfy the following~equations: 

A z = f i  113) 

(14) 

In equations (13) and (14) the functions fi and fz are solutions of the Laplace equation 
in cylindrical coordinates: 

vzfi =o. (15) 
We should require the solutions to be regular in r = 0 and in r = W. We will not 

present here the tedious (but straightforward) mathematical details, and will just report the 
final results. A general analytical basis for the solution space of this class of problems is: 

(16) 
1 4f." 

(47w+O)fn(4r )  
( in / r ) fn  (qr )  eina 

I [ [na/p(m:; 4)1+ 

An arbitrary solution of the equations (1) and (2) within the conditions of the present 
problem can be represented as a linear combination of the vectors given in (16). For the 

-[nru/p(o2 - o;l)]r-(n+') 

r-" 
[incu/p(wz - u?)]rn-1] [ [inor/p(oz - w+)] r++~)  P. 



Quantum wire and free-standing wire normal modes I793 

determination of the solution in a given region divergent vectors in some point of that region 
should be excluded. We have also introduced: 

and f n ( x )  represents a solution of the Bessel equation of order n (this function should be 
bounded in its domain of definition). It must be noticed that o < q. for all the frequencies 
involved in the present problem; thus q is always a real quantity. On the contrary, Q is 
real foro  < or , but it is an imaginary quantity for wr < o < o ~ .  

An 
elementary evaluation of this vector leads to the following result: 

We must determine the vector UN? defined in (4), in cylindrical coordinates. 

UN = u r ~ + u e 6 + + = i  (18) 

where 

au, a u  
0, = -Pa"(,, + 5). 

3. Quantum wire and free-standing wire 

Let us now assume a cylindrical QW with GaAs for r < ro and AlAs for r > ro. Instead 
of the general matching boundary conditions depicted in section 2, in this case we shall 
impose [22] 

(i) continuie of @ and DN at r = ro (DN = D, = 4nau, - &@/ar) 
(ii) U = 0 for r = ro. 

The matching conditions described above should be applied to the solutions of the QW 
case. Avoiding mathematical details, we just report the results obtained [38]: 
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4na B 
caw 4 

$=-- 

In the expressions above: x = 4r0, y = Qro and 

while the constant B was introduced in order to ensure the normalization of the oscillation 
modes. The eigenfrequencies of the oscillation modes for this case are reported in 1251. For 
an FSW we have U = 0 for r > ro but there is an electric potential 4 # 0 in the whole space. 
The form of the solutions can be easily deduced from the general analytic basis studied in 
section 2. The matching boundary conditions corresponding to the present case are: 

(i) continuity of qi at r = ro 
(ii} UN = 0 at r = ro 
(iii) continuity of DN = D, at r = ro. 

The latter condition entails the following relation: 

(24) a$ a4 4naur(r;, 8)  - &,-(r;,8) = -q,w-{r$9 8). 
ar ar 

Applying the above mentioned matching boundary conditions, we are led to the 
following solution of our problem: 

4na 
caw 

$ = - B  

where 
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B is again a normalization constant. The eigenfrequencies of the oscillations for the FSW 
case are given by solving the following secular equation: 

4. Electron-phonon interaction Hamiltonian 

The fundamental equations of this theory are equations (1) and ( Z ) ,  having the general form: 

where M is a matrix differential operator [39]. We use subscript m to label the different 
eigenvalues. Elsewhere [39] we have proved that: (i) the operator M is Hermitian with 
respect to the solution space of the present problem; (ii) the eigensolutions of equation (31) 
are orthogonal in the following sense (see the appendix): 

p u m  . um, d3r = 0 for m #mi. (32) J *  
The'integral in (32) is taken over the whole volume of the system. For a Hermitian 

operator it is clear that the set of eigensolutions of equation (31) (i.e., the infinite set of 
eigenvectors U,)  constitute a complete set. Therefore, from the eigensolutions of equation 
(31) we can always construct a complete set of orthonormal eigenvectors, representing a 
basis that spans the solution space of the present problem. It has been shown in [8] that 
the electron-phonon scattering rates in quantum wells are practically independent of the 
set of functions used. if this set is orthogonal and complete. In [391 the necessary and 
sufficient conditions to have a space of orthonormal and complete functions independent 
of the geometry of the.system has been given. These conditions are connected to the 
Hermiticity of the operator M and the boundary conditions that the functions U and Q have 
to satisfy. 

For our case we introduce the following labelling of the eigenvectors: 
ein13 

unm(r.  e )  = Rnm(r)+ + e n m ( r ) i }  r. I 2n 

s 

(33) 

The functions Rem'@) and enm(r)  can be easily inferred from the results of section 2. The 
orthonormality condition is then given as follows 

p [R:mRnm, +'O~m,O,,r] r dr  =am,,,,. (34) 

The other important point is completeness, which can be stated as follows: 

S(r - r') cp [REm(r)Rnm(r') + @;,(r)@,,(r')] ein(e-e') = 2n r s(e -ef). (35) 
n.m 

It is also clear that the potential q5 can be written in the form: 

-pnnm(r9 e )  = fnm(r)ein8. (36) 
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From the eigenvectors obtained in the previous sections we can construct a general 
displacement vector u(r, 8, t )  by linear superposition. In a similar way we can construct 
a general potential $(r, 8 ,  f). In the second-quantization formalism, the components of 
C(T, t), in cylindrical coordinates, are given by: 

= CC., [Oim(r)ei(n'-oU')i nm + HC]. (38) 

Notice that, without loss of generality, we assume constants C., to be real quantities. 
Following the procedure described in (391, the constants C,, are determined. We here 
write just the final result: 

n.m 

f i  $12 
C", = - (39) 

We thus have a complete determination of the quantum field operators describing the polar 
optical phonons in the structures we are studying. In order to determine the electron-phonon 
interaction Hamiltonian we have to write the corresponding operator for the potential: 

l2W,,Ll 

The-constants C,, must be the same as in (37) and in (38) because these quantities 
conespond to solutions of the coupled equations of this theory. Fnm(r) is defined by: 

where fnm(r) was introduced in (36). We are thus finally led to a Frohlich-like electron- 
phonon interaction Hamiltonian, which can be obtained from -e$: 

G = enm [F,, (r)e'n'L, + HC] (42) 
n.m 

where 

It should be also remarked that when writing the Hamiltonian t = 0 was set. Concerning~ 
functions Fnm(r), they have different forms for the QW and for the FSW. From equation (22) 
we have: 

where 

From equation (27) we have: 
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where t,(x, y )  was defined in (28). It should be noted that in equations (44) and (46) the 
constants B., are the same as introduced in section 3 in order to ensure the orthonormality 
of the eigenvectors uam, i.e., equation (34). The Hamiltonians (44) and (46) are reduced 
to those obtained in the dielectric continuum model for a sufficiently large ro. Purely 
superficial modes are obtained for ro --f CO, i.e. when the mechanical boundary conditions 
(short-range interactions) are negligible. In that case, the long-range interactions associated 
with the electrostatic potential are dominant. Thus, our phenomenological model is reduced 
to the dielectric continuum model with electrodynamical boundary conditions as a limiting 
case. If ro is smaller than or of the order of q-' and e-', the effects of the mechanical 
boundary conditions become important. In the general case qr # 0 the above discussion 
still remains valid. We have thus completely determined the electron-phonon interaction 
Hamiltonian 6, describing the Frohlich-like interaction betwen electrons and polar optical 
phonons in the studied structures. It must be remembered that, within the restrictions of 
our calculations, this Hamiltonian describes the interaction with phonons having qr = 0. 

5. Numerical results 

For a numerical analysis of the results of sections 3 and 4 we have taken the parameters 
of GaAs [22]. The study of the Q w  has been carried out within the simplified assumption 
em = Ebm, but for the FSW ebm=l. Figure 1 shows dispersion relation curves (phonon 
energies fiw as a function of radius ro) for three. values of n: n = 0, n = 1 and n = 2. 
The three graphs of the upper part of the figure correspond to the QW case, while the three 
graphs of the lower part correspond to the FSw case. For n = 0 we have decoupled L and 
T modes. The broken lines correspond to the bulk L and T phonon energies respectively. 
For n # 0 the modes are coupled and there can be seen the strong mixing between the 
T and L parts of the oscillations. It is also seen that, whenever a curve resembling an L 
decoupled phonon dispersion curve approaches the corresponding nearly 'T phonon' curve 
an anticrossing takes place and their behaviour changes from L to T phonon dispersion 
and vice versa At these points of strong dispersion the contribution from the electric part 
of the oscillations is stronger. These results agree qualitatively well with those obtained 
in the microscopic calculations of [32, 361 for a QW with rectangular cross-section. The 
strong mixing between T and L phonons has been predicted by microscopic models (see 
for instance [15]) and correctly described by phenomenological continuum treatments in 
QW [22, 231. As ro + CO the bulk T and L phonon dispersion relations are recovered. It 
is interesting to realize that, in the n # 0 case, a new solution appears between h w ~  and 
TI@,  which correspond to a homogeneous polarization of the cylinder. This is the so called 
Frohlich frequency, h w ~ ,  which appears from the boundary conditions in finite media, and it 
was introduced by Frohlich in the study of spheres embeded in an infinite medium 140,411. 
For that frequency, there is no difference between longitudinal and transverse modes. In 
the case of a cylinder, it can be written as: 

(47) 
2 Ea0 Ebm 2 

OF = Y 
6x0 f cbm 

and, substituting the parameters of GaAs, f i o ~  = 36.28 meV for the QW case and fiwF = 
34.15 meV for the FSW. Figure 2 shows the components of the displacement vector U as a 
function of  r for the FSW case. The drawings are the first and second solutions for a radius 
of ro = 21.5 A for three different values of n (n = 0, 1 and 2). The solid curve corresponds 
to the ur component, while the dashed line corresponds to the ug solution, which vanishes 
in the n = 0 case (if the vibrations correspond to transverse solutions, the component of 
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w-35.71 meV . 
U) 

E 
3 
c 1 

@ 
2. -1 

-2 3 

w=36.11 mev 

---_ 

3 
-2 

U-36.65 meV 0=35.85 mev 

__----_ 

-2 

-3 
a0 0.2 a4 0.6 a8 0.0 a2 a4 0.6 0.8 1.0 

rlro r h o  
Figure 2 Phonon amplitudes Rn,,,(r, 8) (solid line) and O,,(r) (dashed line) as a funuion of r 
(m = 1, 2 and 3; n = 0.1 and 2) for the FSW case. In then = 0 case we show only the Rnm(r) 
component since en,,,(,, 8) = 0 for the first longitudinal mode. The calculations comspond to 
a radius m = 21.5. The amplitude has been normalized to the seetion of the cylinder, foilowing 
equation (34). The same arbitmy units are used in all figures. 

U different from zero is ug). The amplitude in the surface can be different from zero 
because the boundary conditions are applied over the stress component (QN = 0 at the 
surface). For the description of the potential we are using both direct plots of Q against 
r and tridimensional plots. In figure 3 there are shown such plots for the FSW case. We 
also present the n = 0, 1 and 2 modes for different phonon energies. In the tridimensional 
plots we use variables x and y ,  which should not be confused with the x and y variables 
used in previous sections. In this case they represent usual Cartesian coordinates, related 
to the cylindrical coordinates in the usual way: x = r cos0 and y = r sine. Moreover, x 
and y are measured in units of ra. The potential profiles were taken at x = 0, while Q was 
measured in units of: 
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1 . 9  

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 
X 

Figure 4. Electrostatic potential &,,(r, e) as a function of I and 8 for n = m = 2. x and y 
represent standard Cartesian coordinates. At the top we show the projection on the z = 0 plane, 
and at the bottom a three-dimensional plot. The potential has been divided by the constant 
,/2nhzu~o(&t - c ; ' ) / V ,  and has units ofmeV-'n A. 

We can observe in the potential profile (at the top of figure 3) the continuity of the 
potential at r = ro. Finally, figure 4 shows another graph for the potential in the form of 
equipotential curves in the ( x ,  y) plane (top) and as a three-dimensional plot (bottom). The 
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mode with n = 2 and m = 2 is presented. The modes were all normalized in the form 
described in section 3. It can be seen that we obtain the correct symmetry pattern for the 
potential and the mechanical oscillation amplitudes. It is also obvious that the requirements 
of classical electrodynamics are fulfilled. 

6. Coucludiug remarks 

In this work we aimed to give a relatively complete treatment of the polar optical phonons 
and the electron-phonon interaction in semiconductor structures of the type of QWs and FSWS 
having cylindrical geometry. We studied the important case of axial wave vector qr equal 
to zero. Our treatment is characterized by a consistent application of the phenomenological 
approach, based on the principles of macroscopic physics of continuous media. We have 
proved that such a treatment, including a correct manipulation of the matching problem, 
leads to results that (i) do not violate the standard principles of macroscopic physics, (ii) 
provide a satisfactory account of the physical features of the eigenmodes in a Qw and an 
FSW, and also appear to agree well with microscopic calculations. Therefore, artificially ad 
hoc manipulations are not needed in order to get correct results and we also do not have to 
induce the correct long-wavelength behaviour starting from microscopic models. 
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Appendix. Orthogonality of the amplitudes 

Let us now briefly describe how the orthogonality condition (i.e., equation (32)) can be 
proved in our case. From equations (1) and (Z), taking due account of equations (33) and 
(36), we can find that 

For brevity we are avoiding the subscript n in all our expressions. We now proceed in a 
rather standard way for this kind of demonstration. (Al) is multiplied by RL. After that 
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we take the complex conjugate of equation (Al) with the change m +- m' and multiply it 
by R,,,. Subtracting the second equation from the first one we obtain: 
(U; - U;.)~;,~m 

= a -(Ri, fk - R,~f,) + Bl(RLRi, - R2Rm) + BZ --(RhR;, - R,R;,) 
P r 

in in 
r r 

+-(BE - &)[RE,@&, + RmO;,] - ?(& +&)[RE,@, +OkRm].  

(A3) 
Applying the same procedure to equation (A2) we obtain: 

(U; - U ; , ) O p m  

p r  
ina 

= -(O:,fm + 0, f;,) +&(o:,o: - Om@?) 

(-44) 
in 
r 

+-(O:,@L a' - @;,Om) + -(@ - &)[O:.RL + @,,,R:,]. r 
Summation of equations (A3) and (A4) provides: 

ina a 

p r  P 

2 2  (U, - U,, , , ) [R~?R~ + @:,Om] 

= -[OG,fm + O,f,,l+ -(RG,fA - R m f , )  

+--[r(RLRi, g d  - RmR2,)] ' + ---[r(@L@:, Bt d - Om@;,)] 
r dr r d r  

(W 
in d 
r dr 

+(@ - &)--[RZ&, + Rm@:,1. 

From equation (Z), applying equation (AZ), we obtain: 

646) 

From equation (A6), after straightforward mathematical manipulations, we can find that: 
r . 

ina 

P r  
-10, f;, + 0:. fml 

(-47) 

1 - - 2 [ ( f ; . ~  - f2fm) + ;(.c,G - f ; f m )  

01 a 
+-[R,f,, - fmRirl  - -[RLf;, - R;,fml. 

pr P 
Substitution of equation (A7) into equation'(A5) leads us to: 

cm 1 d a1 d 
p r dr 

cU; - U,$)(~;,~m f o p , )  
=- --[r(fhf,, - f , f m ) l  + ---[r(Ri,fm - Rmf;n)l 4na r dr 

+---[r(OLO:, - @mO$,)J+(,$ -&)--[R;& f R , O ~ ~ ] .  
P; d in d 
r dr r dr (A8) 

Integration of equation (A8) gives: 

[R;.R, + @:,O,]rdr 

cmro 1 .  % - (AS) = -(f,f,, f>fm)lr=n + (BE - &)in[Rir@i + R,@~,ll,=o. 
4Jra 
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It is easy to prove that u., = 0 for r = 0 whenever n # 1. But for n = 1 it is seen 
that: 

On the other hand, due to matching boundary conditions, it is seen that the first term on the 
right-hand side of equation (AS) is zero. Hence, we have proven that, for m # m': 

l" [R: .R ,  + @i,O,]rdr = 0. (A 10) 

This is the orthogonality condition for our present problem, valid for both the QW and 
the FSW. 
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